Abstract

The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300–423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W—Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0.49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.