Abstract

Methylated DNA is not only a diagnostic but also a prognostic biomarker for early-stage cancer. However, sodium bisulfite sequencing as a "gold standard" method for detection of methylation markers has some drawbacks such as its time-consuming and labor-intensive procedures. Therefore, simple and reliable methods are required to analyze DNA sequences with or without methylated residues. Herein, we propose a simple and direct method for detecting DNA methylation through its conformation transition to G-quadruplex using a solution-gated field-effect transistor (SG-FET) without using labeled materials. The BCL-2 gene, which is involved in the development of various human tumors, contains G-rich segments and undergoes a conformational change to G-quadruplex depending on the K+ concentration. Stacked G-quadruplex strands move close to the SG-FET sensor surface, resulting in large electrical signals based on intrinsic molecular charges. In addition, a dense hydrophilic polymer brush is grafted using surface-initiated atom transfer radical polymerization onto the SG-FET sensor surface to reduce electrical noise based on nonspecific adsorption of interfering species. In particular, control of the polymer brush thickness induces electrical signals based on DNA molecular charges in the diffusion layer, according to the Debye length limit. A platform based on the SG-FET sensor with a well-defined polymer brush is suitable for in situ monitoring of methylated DNA and realizes a point-of-care device with a high signal-to-noise ratio and without the requirement for additional processes such as bisulfite conversion and polymerase chain reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.