Abstract
The effect of 150 MeV Ag9+ ion irradiation on electrical characteristics of Si photo detectors has been analyzed through in-situ Current voltage (I-V) and Capacitance voltage (C-V) measurements. Ideality factor (n), series resistance (Rs) and reverse leakage current (IR) are extracted from I-V characteristics. The value of n for pristine detector is found to be 1.24 and it has increased gradually along with the fluence. The value of IR for pristine is found to be 4.97 × 10−8 A and it increases to about three orders of magnitude at the fluence of 1 × 1013 ions/cm2 and further there is no observable change. Also, C-V characteristics exhibit considerable degradation. The value of capacitance decreased from 1.13 ×10−8 F to 3.97 × 10−10 F and also carrier concentration (NA) undergoes slight decrease with the increase in fluence. The 150 MeV Ag9+ ion induced displacements, vacancies in the bulk region mainly attribute to the observed degradation in the electrical characteristics. The ionization and displacement damage profiles were estimated from SRIM/TRIM (Stopping power and Range of Ion in Matter/Transport and Range of Ion in Matter) simulation codes. The observed degradations are explained in terms of TID (total ionization dose) and Dd (displacement damage dose).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.