Abstract

BackgroundA novel sodium fluoride toothpaste containing lactate ion and polyvinylmethylether-maleic anhydride has been developed to promote enamel remineralisation and resistance to demineralisation. In this in situ study, we compared this toothpaste (‘Test’) with a stannous fluoride-zinc citrate (SnF2-Zn) toothpaste (‘Reference’) (both 1100–1150 ppm fluoride) and a fluoride-free toothpaste (‘Placebo’) using an enamel dental erosion-rehardening model.MethodsIn each phase of this randomised, investigator-blind, crossover study, participants wore palatal appliances holding bovine enamel specimens with erosive lesions. They brushed their natural teeth with either the Test, Reference or Placebo toothpastes, then swished the resultant slurry. Specimens were removed at 2 h and 4 h post-brushing and exposed to an in vitro acid challenge. Surface microhardness was measured at each stage; enamel fluoride uptake was measured after in situ rehardening. Surface microhardness recovery, relative erosion resistance, enamel fluoride uptake and acid resistance ratio were calculated at both timepoints.ResultsSixty two randomised participants completed the study. Test toothpaste treatment yielded significantly greater surface microhardness recovery, relative erosion resistance and enamel fluoride uptake values than either Reference or Placebo toothpastes after 2 and 4 h. The acid resistance ratio value for Test toothpaste was significantly greater than either of the other treatments after 2 h; after 4 h, it was significantly greater versus Placebo only. No treatment-related adverse events were reported.ConclusionsIn this in situ model, the novel-formulation sodium fluoride toothpaste enhanced enamel rehardening and overall protection against demineralisation compared with a fluoride-free toothpaste and a marketed SnF2-Zn toothpaste.Trial registrationClinicalTrials.gov; NCT03296072; registered September 28, 2017.

Highlights

  • A novel sodium fluoride toothpaste containing lactate ion and polyvinylmethylether-maleic anhydride has been developed to promote enamel remineralisation and resistance to demineralisation

  • The first participant was enrolled on November 13, 2017; the last participant completed the study on January 16, 2018

  • All randomised participants were included in the modified intentto-treat (mITT) and safety populations

Read more

Summary

Introduction

A novel sodium fluoride toothpaste containing lactate ion and polyvinylmethylether-maleic anhydride has been developed to promote enamel remineralisation and resistance to demineralisation. Erosive tooth wear develops as a consequence of intraoral acid exposure from dietary and/or gastric sources Such processes can cause enamel surfaces to soften and become more susceptible to abrasive wear or attrition, leading to progressive loss of dental hard tissue [1, 2]. As well as having a role in preventing dental caries, fluoride-containing toothpastes promote enamel remineralisation after exposure to dietary acid, leaving a fluoridated surface that is more resistant to subsequent acid exposure [6,7,8] This fluoride benefit has been observed as early as 1 h after toothpaste use in in situ experimental conditions similar to those used here, and seen to progressively increase after 2 and 4 h [9]. Previous studies have tested the hardness of the enamel surface using the ‘surface microhardness test’ to detect changes in mineral content [6,7,8,9,10]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.