Abstract

Pt nanoparticles (4.8 nm) were anchored onto the surface of mesoporous nickel oxide (NiO) supports. Pt/NiO samples were compared with pristine NiO and Pt/SBA-15 silica catalysts in CO2 hydrogenation to form carbon monoxide, methane, and ethane at 473–673 K. Pt/NiO (1%) samples were ∼20 times and ∼1.5 times more active at 493 K compared with Pt/SBA-15 and NiO catalysts, respectively. However, the Pt-free NiO support has an activity of 120% compared to that of Pt/NiO catalysts at 673 K. In the case of 1% Pt/SBA-15 catalyst, the selectivity toward methane was 13%, whereas it was 90 and 98% for NiO and 1% Pt/NiO at 673 K, respectively. Exploration of the results of the reactions was performed by near-ambient pressure X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy. In the case of pure NiO, we found that the surface of the support was mainly covered by elemental Ni under reaction conditions, where the Ni/NiOx system is responsible for the high activity o...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call