Abstract

Conducting microtubules of Polyaniline (PANI) were synthesized for the first time by the “in situ doping polymerization” method in the presence of β-naphthal- enesulfonic acid (NSA) as dopant. Different doping methods, such as “immerse doping” and “grind doping,” and different synthetic conditions, such as molar ratio of aniline (An) to NSA (An/NSA), concentration of NSA in the polymerization media, reaction temperature, and time were investigated to understand the formation of microtubules. It was found that the PANI–NSA microtubules can be formed only by the “in situ doping polymerization” method, and the above synthetic conditions strongly affect the formation of the PANI–NSA microtubules, especially the molar ratio of An to NSA. An optimal condition was found under which tubules with 1–3 μm in diameter and 10–50 μm in length were obtained. The morphology of PANI–NSA tubules was proved by SEM and TEM, and their backbone structure was characterized by FTIR, UV-VIS, XPS, and X-ray diffraction. Results of these measurements showed that the molecular structures of the resulted PANI–NSA microtubules were identical to that of PANI–HCl synthesized by conventional method. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 151–157, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.