Abstract

In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals has been directly demonstrated on a boron-doped diamond electrode. The DNA-electrochemical biosensor incorporates immobilized double-stranded DNA (dsDNA) as molecular recognition element on the electrode surface, and measures in situ specific binding processes with dsDNA, as it is a complementary tool for the study of bimolecular interaction mechanisms of compounds binding to DNA and enabling the screening and evaluation of the effect caused to DNA by radicals and health hazardous compounds. Oxidants, particularly reactive oxygen species (ROS), play an important role in dsDNA oxidative damage which is strongly related to mutagenesis, carcinogenesis, autoimmune inflammatory, and neurodegenerative diseases. The hydroxyl radical is considered the main contributing ROS to endogenous oxidation of cellular dsDNA causing double-stranded and single-stranded breaks, free bases, and 8-oxoguanine occurrence. The dsDNA-electrochemical biosensor was used to study the interaction between dsDNA immobilized on a boron-doped diamond electrode surface and in situ electrochemically generate hydroxyl radicals. Non-denaturing agarose gel-electrophoresis of the dsDNA films on the electrode surface after interaction with the electrochemically generated hydroxyl radicals clearly showed the occurrence of in situ dsDNA oxidative damage. The importance of the dsDNA-electrochemical biosensor in the evaluation of the dsDNA-hydroxyl radical interactions is clearly demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call