Abstract
Spectroscopic investigation of membrane proteins in their native environment is a challenging task. Earlier we demonstrated the feasibility to measure precise distances within outer membrane proteins in E. coli and native membranes using methanethiosulfonate (MTS) functionalized labels combined with pulsed electron-electron double resonance spectroscopy. Here we show the application of maleimide functionalized Gd(III), nitroxide, and trityl labels for in situ distance measurement using the cobalamin transporter BtuB. These labels enabled distance measurements for BtuB in E. coli and native outer membranes and in the membranes maleimide-Gd-DOTA also is effective. Further, we show that the observable dipolar evolution time can be significantly prolonged in the native environments using the Carr-Purcell 5-pulse electron double resonance sequence. For a nitroxide-nitroxide pair, application of sech/tanh inversion pulses substantially suppressed the 4-pulse artifact at the Q-band frequency. In the case of a nitroxide-trityl pair, Gaussian pump pulses of varying amplitude are sufficient to suppress the artifact to the typical noise level. The feasibility of a range of bioresistant spin labels and the 5-pulse electron double resonance offers promising tools for investigating heterooligomeric membrane protein complexes in their native environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.