Abstract
An in situ study with dispersive EXAFS (Extended X-Ray Absorption Spectroscopy) at the Ir-LIIIedge is performed to characterize Electrodeposited Iridium Oxide Films (EIROF) under chronoamperometric conditions. The technique monitors the local chemical environment and electronic structure of iridium during the oxidation of Ir(III) to Ir(IV) with a time resolution of milliseconds. The study is performed in both acidic and basic media. The Fourier transforms of the time-resolved EXAFS signals clearly show that the short-range structure of Ir is similar to that of rutile-type IrO2and is maintained during the reaction, thus accounting for the flexibility of the structure of the electrode material in accommodating different oxidation states. From a more general point of view, the work demonstrates the capabilities of in situ experiments based on state-of-the-art dispersive EXAFS in clarifying the mechanistic aspects of electrochemical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.