Abstract

AbstractThe application of single‐atom catalysts (SACs) to high‐temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water–gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X‐ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high‐temperature rWGS conditions is associated with Pd‐Ti coordination, which manifests upon O‐vacancy formation, and the artificial increase in TiO2 surface area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call