Abstract

Abstract Hydrogen gas was injected, together with helium and neon, into a borehole in the low-diffusivity Opalinus Clay rock. The hydrogen partial pressure was at most 60 mbar. A water production flow rate from the surrounding rock of c. 15 ml/day had been obtained previously, indicating that the test interval wall was presumably saturated with water. Helium and neon concentrations decreased as expected while taking into account dissolution and diffusion processes in the porewater. In contrast, the disappearance rate of hydrogen observed (2×10 −4 to 3×10 −4 mol/day/m 2 ) was c. 20 times larger than the calculated rate considering only dissolution and diffusion. The same rate was observed following a new hydrogen injection and over a six-month semi-continuous injection phase. Simultaneously, sulphate and iron concentrations decreased in the water, whereas sulphide became detectable. These evolutions may be due to biotic processes involving hydrogen oxidation, sulphate reduction and Fe(III) reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.