Abstract
Thixoforming involves heating different types of alloys to the semisolid state at high heating rates and forming in die-casting machines or conventional presses. At temperatures higher than the solidus and lower than the liquidus, the mush metal behaves like a high-viscosity thixotropic material. Therefore, determining the thermodynamic behavior of the solid-to-liquid transition is paramount to control thixoforming processes. This article describes a simple, novel experimental setup based on differential thermal analysis (DTA) for analyzing the phase transitions in an alloy heated using high heating rates typical of industrial applications. A365 alloy was chosen to demonstrate the effectiveness of the method as the phase transformations for this alloy in semisolid materials (SSM) processing are well understood. Samples were heated to 750 °C using constant linear heating rates of 5, 10, 15, 20, 25, 50, 75, 100 and 125 °C min in a Norax 25 kW 8 kHz induction furnace with an Omron E5CK temperature controller. AISI 316 austenitic stainless steel was used as the inert reference. Comparison of the results of DTA using the proposed method and the results of simulation with Thermo-Calc® indicates that the proposed in situ DTA device and its method is suitable for analyzing phase transitions when high heating rates are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.