Abstract

ABSTRACTThe growth of high quality amorphous hydrogenated semiconductor films was explored with different in situ spectroscopic methods. Nucleation of ArF laser-induced CVD of a-Ge:H on different substrates was investigated by real time ellipsometry, whereas the F2 laser (157nm) deposition of a-Si:H was monitored by FTIR transmission spectroscopy. The ellipsometric studies reveal a significant influence of the substrate surface on the nucleation stage, which in fact determines the electronic and mechanical properties of the bulk material. Coalescence of initial clusters occurs at a thickness of 16 Å for atomically smooth hydrogen-terminated c-Si substrates, whereas on native oxide covered c-Si substrates the bulk volume void fractions are not reached until 35 Å film thickness. For the first time we present a series of IR transmission spectra with monolayer resolution of the initial growth of a-Si:H. Hereby the film thickness was measured simultaneously using a quartz crystal microbalance with corresponding sensitivity. The results give evidence for cluster formation with a coalescence radius of about 20 Å. Difference spectra calculated for layers at different depths with definite thickness reveal that the hydrogen-rich interface layer stays at the substrate surface and does not move with the surface of the growing film. The decrease of the Urbach energy switching from native oxide to H-terminated substrates suggests a strong influence of the interface morphology on the bulk material quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.