Abstract
This review focuses on the description of the structure and composition of a variety of Langmuir monolayers (LMs) deposited at the air/water interface by using ellipsometry, Brewster Angle microscopy and scattering techniques, mainly neutron and X-ray reflectometry. Since the first experiment done by Angels Pockels with a homemade trough in her home kitchen until today, LMs of different materials have been extensively studied providing not only relevant model systems in biology, physics and chemistry but also precursors of novel materials via their deposition on solid substrates. There is a vast amount of surface-active materials that can form LMs and, therefore, far from a revision of the state-of-the-art, we will emphasize here: (i) some fundamental aspects to understand the physics behind the molecular deposition at the air/water interface; (ii) the advantages in using in situ techniques, such as reflectometry or ellipsometry, to resolve the interfacial architecture and conformation of molecular films; and, finally, (iii) a summary of several systems that have certain interest from the experimental or conceptual point of view. Concretely, we will report here advances in polymers confined to interfaces and surfactants, from fatty acids and phospholipids monolayers to more unconventional ones such as graphene oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.