Abstract

Reliable, high temporal and spatial resolution data are essential for enhancing our understanding of aquatic dissolved organic carbon (DOC) biogeochemical cycling. This paper describes a novel UV spectrophotometric sensor for the real time, in situ, high resolution (every 30 s) mapping of DOC in freshwaters. The sensor incorporates high resolution, multi-wavelength spectral acquisition (256 channel photodiode array) and a hybrid linear analysis (HLA) curve fitting algorithm. The portable and reagentless in situ UV sensor has a good linear range (0.5-15 mg C L(-1)) and precision (mean RSD 8.5%, n = 7 standards each measured 5 times) and quantitative recoveries were obtained for spiked river water (93.8 +/- 6.2%, n = 35). The DOC field data were in good agreement with results from a laboratory high temperature combustion method (t test (p = 0.05) gave P = 0.20 (n = 14), 0.89 (n = 21) and 0.92 (n = 15) for three separate freshwater deployments). These data suggested that solar radiation, coupled with microbial uptake and release, together with the physico-chemical parameters of hydrological flow, temperature and pH were significant drivers of DOC cycling in this ecosystem. Real time data processing provided an immediate data stream for mapping diurnal and/or seasonal DOC cycling. This capability will enhance our understanding of DOC sources, delivery mechanisms and internal cycling and support sustainable catchment management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.