Abstract

Phase transitions in a single crystal of a metastable β-titanium alloy (Ti-15Mo) were investigated in situ during heating by synchrotron X-ray diffraction. The results were compared with previous measurements of electrical resistance. Single-crystalline samples allowed different crystallographic families of ω-Ti and α-Ti phases to be distinguished. The observed evolution of the intensity of the reflections of the ω phase during heating is consistent with the evolution of electrical resistance, which proves that the resistance is affected by the presence of ω-phase particles. Between approximately 673 and 833 K, both the resistance and the intensity of ω peaks sharply decrease. At 833 K, ω reflections disappear, indicating a complete dissolution of the ω phase due to achieving the solvus temperature of the ω phase in the Ti–15Mo alloy. The synchrotron X-ray diffraction experiment proved that the disappearance of the ω phase during heating of Ti–15Mo with a heating rate of 5 K min−1 occurs by its dissolution back to the β phase and not by ω → α transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.