Abstract

Long term tritium retention is one of the most critical issues for ITER and future fusion devices. While a global analysis of the T retention can be made by T accountancy in the activated phase of ITER, fuel retention and control must be already addressed in the non- activated phase, to identify the mechanism, location and amount of retention, its dependence on plasma and wall conditions and to qualify T retention mitigation and control techniques. For this purpose a new diagnostic, laser induced desorption spectroscopy of retained fuel has been developed and applied in TEXTOR. Hydrogen isotopes are desorbed from re-deposited layers on graphite plates by rapid heating with laser radiation. The released particles have been quantified in situ by spectroscopic measurements of hydrogen lines in a tokamak plasma. The results were validated by ex situ analysis of the hydrogen content of deposited a-C:H layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call