Abstract

AbstractWe report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels <0.05 wt % B by the NASA Curiosity rover ChemCam instrument in calcium‐sulfate‐filled fractures, which formed in a late‐stage groundwater circulating mainly in phyllosilicate‐rich bedrock interpreted as lacustrine in origin. We consider two main groundwater‐driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate‐bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.