Abstract

As NOx has been turning into a crucial environmental problem, NH3-SCR technology with relatively simple device, reliable operation and low secondary pollution, has become a widely used commercial and mature de-nitration technology. However, some weaknesses restricted the further application of commercialized V2O5-WO3/TiO2 NH3-SCR catalysts, while Fe2O3-based catalysts have received much attention due to their high thermal stability, passable N2 selectivity and low cost. In this study, Fe2O3-containing solid waste derived from Zn extraction process of electric arc furnace dust was exploited as the base material for catalyst preparing. Owing to the complementary and synergistic effect of CeO2 and Fe2O3, 0D CeO2 quantum dots (CeQDs) with fully-exposed active sites, large specific surface area, and rapid charge transfer have been introduced and deposited onto Fe2O3-containing solid waste nanorods. The in-situ deposition of CeQDs led to the admirable enhancement in NH3-SCR catalytic activity, N2 selectivity and SO2 tolerance of the extremely low-cost Fe2O3 catalyst. Comprehensive characterizations and DFT calculations describing the adsorption of O2 and NH3 were applied to analyze the catalyst structure and further investigate the detailed relationship between structural properties and activity as well as reaction mechanism. This work provides new insights for the high-value utilization of iron-containing solid waste and a practical reference for boosting the performance of NH3-SCR catalysts by introducing quantum dots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.