Abstract

A thin-film solid-state battery was prepared with a vanadium pentoxide cathode and a lithium phosphate electrolyte and studied in situ by ultrahigh vacuum scanning tunneling microscope/atomic force microscopy (STM/AFM). Orientation of the (001) plane of parallel to the substrate was detected via observation of the periodicity of Å, which is consistent with the unit cell spacing in the direction. Conductance of the battery was studied locally with the probe tip of the STM/AFM in the regime of mechanical contact with a constant repulsive force. Lateral variation of contact conductance from 0.4 to 2.2 nA was detected as a function of position of the tip in contact with the cathode. The device revealed an extremely high current density of 1 due to the low thickness of the electrolyte and the cathode and the concentration of electric field under the scanning probe microscope tip. Transformation of cathode structure due to Li ion intercalation was observed in real time. © 2001 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.