Abstract

In this work, we propose an alternative approach to develop a polymer-ceramic composite electrolyte through the in-situ PEG-MMA and PEG-DA cross-linking reaction within interconnected microporous LATP ceramic. This synthesis approach results in a PEO-LiTFSI/LATP electrolyte with an ionic conductivity of 0.25 × 10−4 S cm−1 and 4.01 × 10−4 S cm−1 at 30 and 80 °C, respectively. A continuous conductive path through the electrolyte is provided by the polymer phase and the 3D interconnected support. The electrolyte system demonstrates the synergy between the ceramic support and the cross-linked polymer electrolyte complex. The connected domains of the LATP support maximize the interaction with anions, promoting the Li+ transference number enhancement. Impedance and dielectric analyses indicate that the Correlated Barrier Hopping (CBH) model is the most likely conduction mechanism for the composite electrolyte, following the non-Debye type dielectric relaxation. Additionally, the PEO-LiTFSI/LATP composite exhibits excellent anodic stability and it has great potential for use in Li-Ion battery technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call