Abstract

A novel and effective one‐step method has been demonstrated to fabricate cross‐linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross‐linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in‐situ cross‐linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross‐link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3‐hour reaction not only shows a 40% enhancement in membrane Young's Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2‐h at 60°C. This study may open up a totally new approach to design next‐generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.