Abstract

ABSTRACTIn this study, an in situ crosslinked polydimethylsiloxane/brominated polyphenylene oxide (c‐PDMS/BPPO) membrane on ceramic tube has been prepared for the recovery of butanol by pervaporation. A series of BPPO with different bromide‐substituted ratio were firstly synthesized through Wohl–Ziegler reaction. BPPO and PDMS were sequentially assembled and in situ crosslinked to form the final c‐PDMS/BPPO membrane. The results of solid‐state NMR and Differential Scanning Calorimeter demonstrated that the c‐PDMS/BPPO copolymer has a crosslinking structure and the SEM result proved the coverage of ceramic tube by copolymer layer. The effects of preparation conditions including dipping time and bromide‐substituted ratio of BPPO on the membrane performance were studied. The pervaporation experiments of butanol–water mixture indicated that the c‐PDMS/BPPO membrane exhibited an acceptable flux of 220 g·m−2·h−1 and high separation factor of 35 towards butanol, when the bromide‐substituted ratio was 34 wt % and the dipping time was 1.33 h. Moreover, the c‐PDMS/BPPO membrane performed excellent stability in an about 200 h continuous butanol recovery, as compared to the PDMS membrane. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014, 131, 40004.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.