Abstract

The effective elimination of aromatic compounds from wastewater is imperative for safeguarding the ecological environment. Bioelectrochemical processes that combine cathodic reduction and anodic oxidation represent a promising approach for the biomineralization of aromatic compounds. However, conventional direct current bioelectrochemical methods have intrinsic limitations. In this study, a low-frequency and low-voltage alternating current (LFV-AC)-driven bioelectrode offering periodic in situ coupling of reduction and oxidation processes was developed for the biomineralization of aromatic compounds, as exemplified by the degradation of alizarin yellow R (AYR). LFV-AC stimulated biofilm demonstrated efficient bidirectional electron transfer and oxidation–reduction bifunctionality, considerably boosting AYR reduction (63.07% ± 1.91%) and subsequent mineralization of intermediate products (98.63% ± 0.37%). LFV-AC stimulation facilitated the assembly of a collaborative microbiome dedicated to AYR metabolism, characterized by an increased abundance of functional consortia proficient in azo dye reduction (Stenotrophomonas and Bradyrhizobium), aromatic intermediate oxidation (Sphingopyxis and Sphingomonas), and electron transfer (Geobacter and Pseudomonas). The collaborative microbiome demonstrated a notable enrichment of functional genes encoding azo- and nitro-reductases, catechol oxygenases, and redox mediator proteins. These findings highlight the effectiveness of LFV-AC stimulation in boosting azo dye biomineralization, offering a novel and sustainable approach for the efficient removal of refractory organic pollutants from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call