Abstract

Highly efficient enrichment of phosphopeptides is of great significance for phosphoproteomics-related biological and pathological processes research, but it remains challenging due to the lack of affinity materials which hold high enrichment efficiency and capacity. Ti3C2Tx MXene, a novel two-dimensional material with outstanding physicochemical properties, has attracted wide research interests for application in various fields. However, there are few reports on the use of MXene-derived materials for phosphopeptides separation in the biomedical field. In this work, we proposed a facile one-pot method that in situ oxidation and modification of Ti3C2Tx MXene, to prepare two-dimensional (2D) magnetic Fe3O4/TiO2@Ti3C2Tx composites for potential application in phosphopeptides enrichment. Benefiting from the outstanding magnetic responsiveness and multiaffinity sites (Ti-O, Fe-O, and NH2 groups), the Fe3O4/TiO2@Ti3C2Tx composites possessed excellent enrichment performance with high sensitivity (0.1 fmol μL-1), excellent selectivity (β-casein: bovine serum albumin = 1:5000, molar ratio), good repeatability (5 times), and high enrichment capacity (200 mg g-1). Moreover, the results of selective enrichment of phosphopeptides from nonfat milk, human saliva, human serum, and rat brain lysates indicated the great potential of Fe3O4/TiO2@Ti3C2Tx composites in low-abundance phosphopeptides enrichment from complex biological samples. This work has put forward a versatile method to prepare magnetic MXene composites and promoted the use of MXene composites in phosphoproteome in biomedicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.