Abstract

Anode materials are key to determining the energy density, cyclability and of life recyclability for Li-ion energy storage systems. High surface area materials, such as MXenes, can be manufactured with improved electrochemical properties that remove the need for polymeric binders or hazardous chemicals that pose a challenge to recycle Li-ion batteries. However, there remains a challenge to produce Li-ion anode materials that are binder free and poses energy storage characteristics that match the current carbon-based electrodes. Here we show the synthesis of N-doped MXene-TiO2 hybrid anode materials using an aqueous route. N-doped TiO2-MXene was modified using a single step continuous hydrothermal process. Capacity tests indicate an improvement from the initial specific energy capacity of 305 mAhg−1 to 369 mAhg−1 after 100 cycles at a charge rate of 0.1 C and a Coulombic efficiency of 99.7%. This compares to 252 mAhg−1 for the unmodified MXene which exhibited significant capacity fade to 140 mAhg−1. The ability to manufacture a Li-ion anode that does not require toxic chemicals for processing into an electrode and exhibits good energy storage characteristics in a binder free system is a significant step forward for energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.