Abstract
The Co3O4 electrode is a very promising material owing to its ultrahigh capacitance. Nevertheless, the electrochemical performance of Co3O4-based supercapacitors is practically confined by the limited active sites and poor conductivity of Co3O4. Herein, we provide a facile synthetic strategy of tightly anchoring Co3O4 nanosheets to a carbon fiber conductive cloth (Co3O4@C) using the zeolitic imidazolate framework-67 (ZIF-67) sacrificial template via in situ impregnation and the pyrolysis method. Benefiting from the enhancement of conductivity and the increase in active sites, the binder-free porous Co3O4@C supercapacitor electrodes possess typical pseudocapacitance characteristics, with an acceptable specific capacitance of ~251 F/g at 1 A/g and long-term cycling stability (90% after cycling 5000 times at 3 A/g). Moreover, the asymmetric and flexible supercapacitor composed of Co3O4@C and activated carbon is further assembled, and it can drive the red LED for 6 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.