Abstract

Developing an excellent photocatalysis system to remove pesticides from water is an urgent problem in current environment purification field. Herein, a Z-scheme WO3/g-C3N4 photocatalyst was prepared by a facile in-situ calcination method, and the photocatalytic activity was investigated for degradation of nitenpyram (NTP) under visible light. The optimal Z-scheme WO3/g-C3N4 photocatalyst displayed the highest rate constant (0.036 min−1), which is about 1.7 and 25 times higher than that of pure g-C3N4 and WO3, respectively. The improvement of photocatalytic performance is attributed to fast transfer of photogenerated carriers in the Z-scheme structure, which are testified by electron spin resonance (ESR) experiments, photocurrent and electrochemical impedance spectra (EIS) measurements. Moreover, the effects of typical water environmental factors on the degradation NTP were systematically studied. And the possible degradation pathways of NTP were deduced by the intermediates detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS). This work will not only contribute to understand the degradation mechanism of pesticides in real water environmental condition, but also promote the development of new technologies for pesticide pollution control as well as environmental remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call