Abstract

Photo-assisted electrocatalysis has arisen as a promising approach for hydrogen generation by incorporating photocatalysts into electrocatalysts. 2D SnS2 is a photocatalyst that absorbs visible light. However, the rapid recombination of photo-generated electron-hole pairs significantly reduces the overall photocatalytic efficiency of SnS2, limiting its practical application. Thus, this study prepares an in situ heterojunction SnS2@SnO2 using a one-step hydrothermal method. The degradation efficiency of methyl orange (MO) using SnS2@SnO2 is measured, achieving a degradation rate of 92.75% within 1h, which is 1.9 times higher than that of pure SnS2. Additionally, FeNiS/SnS2@SnO2 is synthesized and exhibited significant improvements in the photo-assisted oxygen evolution reaction (OER). It achieves an overpotential of 260mV and a Tafel slope of 65.1mVdec-1 at 10mAcm-2, showing reductions of 11.8% and 31.8%, respectively, compared to FeNiS alone. These enhancements highlight the strong photo-response capability of SnS2@SnO2. Under the internal electric field of SnS2@SnO2, the photogenerated electrons in the conduction band of SnS2 quickly move toward SnO2, facilitating efficient photocatalytic reactions. FeNiS, with a lower Fermi energy level (EF), facilitates electron transfer from SnS2@SnO2 and enhances OER performance by efficiently participating in the reaction. This study paves a new path for 2D photocatalyst materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.