Abstract

Background: Metal-organic frameworks (MOFs) have concerned substantial research attention as potential electrode materials in the field of electrochemical storage owing to their high porosity. However, their low cycling stability and rapid capacity fading hinder the practical application of MOFs because of the structural instability of the electrodes during cycling. Existing studies have shown that MOF-derived materials are helpful in improving their performance due to controllable functionalities, permanent porosities, and high surface area.Methods: We demonstrated an efficient strategy to solve these problems by combining the beneficial redox properties of Sn and Ni metal precursor and benzene-1,3,5-tricarboxylate (BTC) organic linker. SnONiO derived from Sn-Ni MOFs were in situ deposited on nickel foam (i.e., Sn-Ni MF@Ni nanostructures) by solvo-hydrothermal approach.Significant findings: The all-solid-state asymmetric supercapacitor device, Sn-Ni MF@Ni//AC, exhibited excellent electrochemical storage capacity (214.67 F/g at 1.0 A/g) and excellent high-rate cycling stability of 90% over 6000 cycles. The Sn-Ni MF@Ni//AC nanostructured device exhibited high energy and power densities of 66.87 Wh/kg at 747.67 W/kg, respectively, at a discharge time of 322 s. The remarkable electrochemical storage properties of Sn-Ni MF@Ni nanostructures can be attributed to their unique SnO and NiO bimetallic oxide phases on NF substrates. They are comparable to those of drop-cast Sn-Ni MFs on NF electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.