Abstract
AbstractAqueous zinc–iodine batteries (Zn–I2) demonstrate great promise in large scale energy storage systems. However, their practical application faces significant challenges including dendrite formation, corrosion caused by polyiodine ions, and other side reactions at the zinc anode side. Herein, a facile and efficient pretreatment method for zinc anodes through the substitution reaction of Zn and SnF2 to create a dense and durable multifunctional surface layer (MSL). The MSL comprise tin (Sn) and ZnF2 phases on the zinc metal, in which Sn possesses good zinc affinity and a high hydrogen evolution overpotential, while ZnF2 provides pathways for radial ion transport. Importantly, both have a low binding energy with polyiodine ions, preventing the failure of the interface layer. Therefore, this interface layer can effectively mitigate zinc metal electrode dendrite formation, corrosion from polyiodine ions, and other side reactions induced by water, simultaneously. As a result, the Zn–I2 batteries performance is greatly improved and exhibited a stable cycling to 20 000 times with 80% capacity retention at a current density of 2 A g−1. Even the I2 loading is increased to 8 mg cm−2, it can still cycle stably for 5000 cycles with a capacity retention of 94%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.