Abstract

Iron sulfide (FeS) has gained reasonable attention as a potential electrode material for lithium-ion batteries owing to its high specific capacity. However, along with the intrinsically low conductivity of FeS, the generation of polysulfide intermediates and volume expansion encountered during the cycling process deteriorates its electrochemical performance. A viable solution would be to design conductive carbon nanoarchitectures capable of effectively accommodating electrochemically active FeS to provide an appropriate conductive pathway which can accelerate ion/electron transport. With this objective, we report a facile, green strategy that facilitates the in situ generation of FeS nanoparticles within graphitic carbon capsules (FeS@GCC) derived from waste biomass. Unlike the complex synthetic procedures reported before, the proposed ecofriendly strategy consists of simpler and fewer processing steps, thereby advocating the versatility of this method as a scalable and economic approach. The FeS@GCC comp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.