Abstract

The rational design of visible-light-responsive catalysts is crucial for converting solar energy into hydrogen energy to promote sustainable energy development. In this work, a C─S─C bond is introduced into g-C3N4 (CN) through S doping. With the help of the flexible C─S─C bond under specific stimuli, a hollow coral-like porous structure of S-doped g-C3N4 (S-CN) is synthesized for the first time. And an S-doped g-C3N4/ZnIn2S4 (S-CN/ZIS) heterojunction catalyst is in situ synthesized based on S-CN. S0.5-CN/ZIS exhibits excellent photocatalytic hydrogen evolution (PHE) efficiency (19.25mmol g-1 h-1), which is 2.7 times higher than that of the g-C3N4/ZnIn2S4 (CN/ZIS) catalyst (8.46mmol g-1 h-1), with a high surface quantum efficiency (AQE) of 34.43% at 420nm. Experiments and theoretical calculations demonstrate that the excellent photocatalytic performance is attributed to the larger specific surface area and porosity, enhanced interfacial electric field (IEF) effect, and appropriate hydrogen adsorption Gibbs free energy (ΔGH*). The synergistic effect of S doping and S-scheme heterojunction contributes to the above advancement. This study provides new insights and theoretical basis for the design of CN-based photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.