Abstract

Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.