Abstract

Lithium-sulfur batteries (LSBs) have been considered as the future potential energy storage system with advantages of high energy density (2600 Wh kg−1), eco-friendliness and low cost. However, the poor conductivity and serious shuttle effects of polysulfides block their application. Herein, g-C3N4/carbon heterostructure on graphene nanosheet (PCNG) is constructed via phenyl-modified strategy and in-situ thermal polycondensation, which has a unique electron cloud distribution with excellent sulfur immobilization ability as well as good electroconductivity. As a result, Li-S cells with simple S/C cathodes and PCNG interlayers show a high initial capacity of 1192 mAh g−1 at 0.1C, and an ultra-long lifespan with a slow capacity attenuation of 0.050% per cycle after 800 cycles. The cell with PCNG/PP separator also has a stable cycle performance at high area sulfur loading of 7 mg cm−2. These findings provide a new sight on functionalizing g-C3N4 for application in Li-S electrochemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.