Abstract

Constructing direct Z-scheme heterostructure is an effective way to promote the separation of photogenerated carriers and optimize the redox ability of the photocatalytic system. This work reports the in-situ synthesis of sea-urchin-like ZnS/SnO2 Z-scheme heterojunctions via a one-step hydrothermal method. Both experimental results and density functional theory (DFT) calculations indicate that the tight interfaces derived from in-situ precursor dissociation can ensure a fast transfer for photogenerated carriers, meanwhile, the Z-scheme type of heterojunctions can increase the carrier separation efficiency and maintain the high reduction ability of photogenerated electrons. As expected, the photocatalytic hydrogen evolution rate of the as-optimized ZnS/SnO2 sample can reach 2.17 mmol g−1 h−1, which is 15.5 times higher than that of the commercial ZnS. This work can offer a novel strategy for designing Z-scheme heterojunction as well as controlling the contact interface for boosted photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call