Abstract

Solid sodium-ion batteries (SSIBs) are considered as one of the promising energy storage systems because of their high safety and high energy density. However, the sodium metal anode presents poor wettability with a solid electrolyte, resulting in high interface impedance and dendrite growth, which severely limits their application in practice. Herein, a novel liquid film (Na-BP) interface is constructed between sodium and solid electrolyte (Na3Hf2Si2PO12) with an excellent kinetic mass transfer ability and good fluidity, which could guarantee a close contact and fast charge transfer at interface. The symmetric cells with the designed interface show a high-rate and long-cycle performance and could cycle stably more than 1000 and 700 h at 0.2 and 0.5 mA cm-2, respectively. The critical current density of the cells can reach 3.6 mA cm-2 at room temperature, which is the highest value in similar works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.