Abstract
Safety of lithium metal batteries (LMBs) has been improved by using the solid-state polymer electrolytes, but the performance of LMBs is still troubled by the poor interface of solid electrolytes/electrodes, leading to insufficient interfacial Li+ transport. Here, a novel ultrathin, robust-flexible polymeric electrolyte is achieved by in situ polymerization of 1,3-dioxolane in soft nanofibrous skeleton at room temperature without any extra initiator or plasticizer, leading to the electrolyte with rapid interfacial ion transport. This facilitated Li+ transportation is demonstrated by molecular dynamics simulation. Consequently, the as-prepared electrolyte exhibits excellent cycling performance. The results indicate that the electrolyte works well in the LiFePO4 //Li cell at elevated temperature up to 90°C, and further matches with the high-voltage LiNi0.8 Mn0.1 Co0.1 O2 cathode. This study provides an effective approach to constructing a practical polymeric electrolyte for fabrication of safe, high performance LMBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.