Abstract

NiO nanoplatelets network has been successfully in-situ constructed on La0.75Sr0.25Mn0.5Cr0.5O3-δ (LSCM) electrode through a hydrothermal process for enhancing steam electrolysis performance of the LSCM electrode. Field emission scanning electron microscopy (FESEM) observation indicates that the nanoplatelets with uniform size are self-assembled on the LSCM substrate to form honeycomb-like network. X-ray diffraction (XRD) characterization confirms the phase structure of the nanoplatelets network as cubic NiO. The LSCM electrode modified with NiO nanoplatelets exhibits higher electrical conductivity under reducing atmosphere and better electrochemical performances compared with the pristine LSCM. The current efficiencies are enhanced by about 50% compared with the cells based on LSCM cathode for steam electrolysis by exposing cathode to 5% H2O/5% H2/Ar and 5% H2O/Ar, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.