Abstract

Designing an efficient heterojunction interface is an effective way to promote the electrons' transfer and improve the photocatalytic H2 evolution performance. In this work, a novel hollow hybrid system of Co@NC/CdS has been fabricated and constructed. CdS nanospheres are anchored on the hollow-structured cobalt incorporated nitrogen-doped carbon (Co@NC) through a one-pot in-situ chemical deposition approach, forming an intimate interface and establishing an excellent channel to improve the electrons transfer and charge carriers separation between CdS and Co@NC cocatalyst, which immensely promotes the photocatalytic activity. The rate of photocatalytic H2 evolution over hollow structured Co@NC/CdS heterojunction can be achieved 8.2 mmol g−1 h−1, which is about 45 times of pristine CdS nanospheres. The photocatalytic H2 evolution mechanism has been investigated by the techniques of photoluminescence (PL) spectra, photocurrent-time (i-t) curves, electrochemical impedance spectroscopy (EIS) etc. This work aims to provide a new way in developing of high-performance advanced 3D heterojunction for photocatalytic hydrogen evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call