Abstract
The development of inexpensive and efficient semiconductor catalysts for photo-assisted uranium extraction from seawater remains a huge challenge. Herein, we have successfully synthesized amidoxime-rich g-C3N4 (AO-C3N4) by simply amidoximing a cyano-rich precursor for photo-assisted uranium extraction from seawater. The amidoxime groups not only served as the U(VI) binding sites for efficient uranium adsorption, but also significantly improved the visible light absorption capacity and carrier separation efficiency via introducing defect energy level, resulting in the excellent photocatalytic activity for AO-C3N4 towards photo-assisted uranium extraction. In the process of photo-assisted uranium extraction, U(VI) was first adsorbed by the amidoxime groups on the AO-C3N4 and then reduced to U(IV), while (UO2)O2·2H2O and (UO2)O2·4H2O were further formed by the oxidation of U(IV) by superoxide radicals (·O2-). Moreover, the generated reactive oxygen species (ROS) under light endowed AO-C3N4 with outstanding antibacterial properties, preventing the limitation of uranium extraction capacity from marine biofouling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.