Abstract
Metal-organic framework (MOFs) derived magnetic nanoparticles/porous carbon (M/C) composites featuring efficient interfacial engineering and spatially continuous three-dimensional (3D) networks are desirable electromagnetic wave (EMW) absorbing materials due to multiple transmission path and well impedance matching. However, it is challenging to construct such 3D interconnected carbon networks from a single MOF precursor. Herein, FeNi3 and N embedded 3D carbon networks comprising bamboo-like carbon nanotubes connected carbon nanorods (FeNi@CNT/CNRs) were prepared via one-step pyrolyzing of the composite of melamine and FeNi-MIL-88B. Attributed to the synergistic contributions of 3D interconnected carbon nanotube networks and MOFs derived M/C for multiple transmission path, impedance matching, and dielectric loss (especially for multiple polarization and micro-current), the FeNi@CNT/CNRs nanoarchitectures have demonstrated superior EMW absorbing performance. In particular, the optimized FeNi@CNT/CNR-0.9 has exhibited strong absorption (-47.0 dB, 2.3 mm in thickness) and broadband effective absorption (4.5 GHz, 1.6 mm in thickness). This attractive strategy holds promise as a general approach to fabricate the carbon hybrid network constituted of MOFs derived nanopolyhedron and CNTs for the target application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.