Abstract
A novel 1D-2D hierarchical catalyst comprising of Co3ZnC/Co nanoparticles (NPs) confined in N-doped carbon nanotube-grafted graphitic carbon nanoflakes (Co3ZnC/Co@NCNTFs) has been reasonably designed and constructed in situ by controllable pyrolysis of bimetallic CoZn-ZIF in N2. The 1D N-doped CNTs with closed ends can afford fast electron transportation path, extra interface/dipole polarization, more exposed active sites as well as hierarchical structure to achieve excellent charge transfer and microwave (MW)-harvesting ability. Benefiting from the grafted CNTs structure, well-dispersed/confined Co3ZnC/Co NPs, thin carbon protective layer as well as good impedance matching, the resulting Co3ZnC/Co@NCNTFs exhibit remarkable catalytic activities in both MW-driven oxidation of lomefloxacin (LOM) and direct reduction of 4-nitrophenol (4-NP). Moreover, the oxidation and reduction process can be well-explained by Localized surface plasmon resonance (LSPR) effect and electronic relay mechanism, respectively. This work offers a simple strategy to construct 1D-2D architectures in situ and elucidates their potential applications in environmental water restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.