Abstract

The complexation of N-phthaloyl, N-formyl, and N,N-dimethyl derivatives of S-methylcysteine methyl ester (both racemic and optically pure) with three dimeric rhodium(II) salts, acetate Rh2AcO4, trifluoroacetate Rh2TFA4, and (R)-(+)-α-methoxy-α-trifluoromethylphenylacetate Rh2Mosh4 was investigated by nuclear magnetic resonance spectroscopy (NMR) at room and lower temperatures. The complexation was carried out in situ, in CDCl3 solution using titration procedure; the results were examined by the analysis of 1H and 13C NMR chemical shift change (Δδ). The complexation of free S-methyl cysteine and hydrochloride salt of its methyl ester was performed in D2O solution. For comparison, complexation of some derivatives of leucine, phenylalanine, and proline was examined.N-phthaloyl and N-formyl derivatives of cysteine formed 1 : 1 and 1 : 2 axial complexes with all dirhodium salts. Rhodium substrates were bonded via sulfur. In one case, the complexation of Rh2TFA4 by both sulfur and N-formyl oxygen was noted. Similar complexation of Rh2TFA4, via CHO group, was found for N-formyl derivatives of leucine, phenylalanine, and proline. For N,N-dimethyl derivative of cysteine, both N and S atoms were involved in bonding. At room temperature, in all cases, ligand exchange was fast on the NMR timescale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.