Abstract

Electrical conductivities of mantle silicate minerals (Mg0·9Fe0·1)2SiO4 olivine, wadsleyite and ringwoodite were determined at pressures up to 20 GPa and temperatures up to 1400°C using complex impedance spectroscopy in a high pressure multianvil apparatus. All samples were polycrystalline, synthesized in separate high pressure experiments prior to the electrical measurements. Olivine conductivities up to 10 GPa are very close to values determined at ambient pressure under controlled oxygen fugacities in previous studies indicating a very small pressure dependence. The conductivities of wadsleyite at 15 GPa and ringwoodite at 20 GPa are similar, and both about 100 times greater than for olivine. When compared to conductivity models of Earth's mantle, these results suggest that the steep increase in conductivity near the transition zone is mainly due to the olivine to wadsleyite phase transformation at 410 km depth, with only minor changes in conductivity occurring over the wadsleyite to ringwoodite transformation near 520 km depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call