Abstract
Self-intercalation in two-dimensional (2D) materials, converting 2D materials into ultrathin covalently bonded materials, presents great possibilities for studying a new family of quantum-confined materials with the potential to realize multifunctional behavior. However, understanding the mechanisms and associated in situ kinetics of synthesizing self-intercalated 2D (ic-2D) materials, particularly at the atomic scale, remains elusive, greatly hindering the practical applications of ic-2D crystals. Here, we successfully in situ synthesized ic-2D thin films via thermal annealing of their parental TMDCs inside an electron microscope. We atomically visualized the evolution from TaS2 and NbS2 into the corresponding ic-2D Ta1+xS2 and ic-2D Nb1+xS2, respectively, by in situ scanning transmission electron microscopy (STEM). The self-intercalation process in TaS2 is atomically realized by metal adatom edge adsorption and subsequent diffusion in an atom-by-atom manner. On the other hand, MoS2 and MoSe2 tend to coalesce into metal crystals under the same annealing conditions, suggesting that the self-intercalation process is predominantly controlled by thermodynamic factors as further verified by density functional theory (DFT). By varying the ramping rate and annealing temperature, the coverage and spatial arrangement of the filling sites can be precisely tuned, ranging from 2a × a, a × a, or Ta trimers, as predominantly gauged by kinetic factors. Our work sheds light on the thermodynamics and growth kinetics involved in ic-2D formation and paves the way for growing highly crystalline ic-2D materials with intercalation concentration and topology-dependent properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.