Abstract

HIV-1 RT has been considered as one of the most important targets for the development of anti-HIV-1 drugs for their well-solved three-dimensional structure and well-known mechanism of action. In this study, with HIV-1 RT as target, we used miniaturized parallel click chemistry synthesis via CuAAC reaction followed by in situ biological screening to discover novel potent HIV-1 NNRTIs. A 156 triazole-containing inhibitor library was assembled in microtiter plates and in millimolar scale. The enzyme inhibition screening results showed that 22 compounds exhibited improved inhibitory activity. Anti-HIV-1 activity results demonstrated that A3N19 effected the most potent activity against HIV-1 IIIB (EC50 = 3.28 nM) and mutant strain RES056 (EC50 = 481 nM). The molecular simulation analysis suggested that the hydrogen bonding interactions of A3N19 with the main chain of Lys101 and Lys104 was responsible for its potency. Overall, the results indicated the in situ click chemistry-based strategy was rational and might be amenable for the future discovery of more potent HIV-1 NNRTIs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call