Abstract

Homochiral halide perovskites have gained increasing attention because of their fascinating optoelectronic properties and prospective applications in laser technologies. However, the limited choice of chiral organic templates severely restricts their structural diversity and second-harmonic generation (SHG) effects. Here, we present an in situ chiral template approach for the synthesis of one-dimensional (1D) homochiral lead iodides. A chiral imine (L-ipp) template was generated in situ by reacting L-proline (L-pro) and acetone under ambient conditions. Notably, L-ipp can cooperate with L-pro to direct the formation of a homochiral lead iodide with dual chiral templates, which is unprecedented in crystalline metal halides. The homochiral lead iodide containing both L-ipp and L-pro shows a strong SHG response of 8.0 times that of KH2 PO4 (8.0×KDP). The SHG efficiency is one of the largest values reported to date for any homochiral lead halides under 1064 nm laser irradiation. A comparative study shows that homochiral 1D lead iodides containing either L-ipp or L-pro exhibit relatively weak SHG responses (≤1.0×KDP). This work demonstrates the advantage of using two different chiral templates over a single chiral template in enhancing the SHG responses of halide materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.