Abstract

Abstract The composites of hollow CoFe2O4 and carbon nanotubes (h-CoFe2O4@CNTs) are successfully prepared by using a simple hydrothermal process coupling with the in-situ chemical vapor deposition (CVD) as electrocatalytic materials for counter electrode of dye-sensitized solar cells. The CNTs are uniformly grown on the surface of hollow CoFe2O4 particles verified by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) measurements. The electrochemical performances of hollow CoFe2O4@CNTs composites are evaluated by the EIS, Tafel polarization and CV measurements, and exhibiting high electrocatalytic performance for the reduction of triiodide. The presence of conductive polypyrrole nanoparticles could further improve the conductivity and catalytic performance of the resultant composites. Controlling the thickness of composites film, the optimum photovoltaic conversion efficiency of 6.55% is obtained, which is comparable to that of the cells fabricated with Pt counter electrode (6.61%). In addition, the composites exhibit a good long-term electrochemical stability in I3−/I− electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.