Abstract

The competitive interactions between target (e.g., dissolved trichloroethene) and nontarget (e.g., dissolved humic acid) compounds during chemical oxidation by permanganate were evaluated using syringe reactor experiments. The experiments were performed in phosphate buffered de-ionized water at ambient temperature (∼ 20°C). The dissolved humic acid exerted a significant and almost instantaneous permanganate demand reducing the mass of oxidant available for the destruction of the target compound. At the high humic acid concentration (246 mg/L as Total Organic Carbon), competition between the target and nontarget compounds for the available permanganate significantly reduced the rate of trichloroethene (TCE) degradation and the mass degraded. A pseudo first-order model was shown to effectively predict the rate of TCE degradation as long as sufficient permanganate was available to maintain an oxidant residual while overcoming the demand exerted from the target and nontarget compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.